Prova 2 – MA-327 - Álgebra Linear – 26/11/2020

Nome: RA:

Atenção: Todas as respostas devem ser acompanhadas de justificativas. Respostas sem justificativas não serão consideradas.

Problema 2. (2pt) Considere a aplicação $T: \mathcal{P}_3 \to \mathcal{P}_3$ definido da seguinte forma:

$$T(p(x)) = x^2 p''(x) + p'(x) + p(0),$$

onde $\mathcal{P}_3(\mathbb{R})$ é o espaço vetorial dos polinômios de grau ≤ 3 .

(1pt) Determine a matriz da transformação linear T, $[T]^{\beta}_{\beta}$, onde β é a base canônica

RESPOSTA: Seja $\beta=\{p_1,p_2,p_3\}$ a base canônica de $\mathcal{P}_3(\mathbb{R})$, onde $p_1(x)=1,p_2(x)=x$ e $p_3(x)=x^2$. Então:

$$T(p_2(x)) = x^2 \underbrace{p_2''(x)}_{-0} + \underbrace{p_2'(x)}_{-1} + \underbrace{p_2(0)}_{-0} = 1 = 1 \cdot p_1(x) + 0 \cdot p_2(x) + 0 \cdot p_3(x), \bot$$

$$T(p_{2}(x)) = x^{2} \underbrace{p_{2}''(x) + p_{2}'(x) + p_{2}(0)}_{=1} = 1 \cdot p_{1}(x) + 0 \cdot p_{2}(x) + 0 \cdot p_{3}(x), + 2 \cdot p_{3}(x), + 2 \cdot p_{3}(x) + 2 \cdot p_{3}(x)$$

$$[T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

(1pt) O operador T é diagonalizável? Em caso afirmativo, determine uma base orde- $\overline{\text{nada }\gamma}$ para $\mathcal{P}_3(\mathbb{R})$ de modo que $[T]^{\gamma}_{\gamma}$ seja uma matriz diagonal.

RESPOSTA: O polinômio característico de T é dado por

$$p_T(\lambda) = \det([T]_\beta^\beta - \lambda I_3) = \det\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & -\lambda & 2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = -\lambda (1 - \lambda)(2 - \lambda)$$
e portanto os autovalores de T são $0, 1$ e 2 6Como T possui 3 autovalores distintos e $\dim \mathcal{P}_3(\mathbb{R}) = 3$ temos que T é diagonalizável. Calculemos os autovetores associados a matriz $[T]_\beta^\beta$.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x+y=0 \\ z=0 \end{cases}$$

Portanto, $V_0 = [(1, -1, 0)]$ é o autoespaço associado ao autovalor $\lambda = 0$.

 $\lambda=1: \ \mathrm{Um} \ \mathrm{vetor} \ (x,y,z) \in \mathbb{R}^3$ é autovetor de $[T]_\beta^\beta$ se, e somente se,

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff y = z = 0.$$

Portanto,
$$V_1 = [(1,0,0)]$$
 é o autoespaço associado ao autovalor $\lambda = 1$.
$$\lambda = 2: \text{ Um vetor } (x,y,z) \in \mathbb{R}^3 \text{ é autovetor de } [T]_{\beta}^{\beta} \text{ se, e somente se,}$$

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -x+y=0 \\ -y+z=0 \end{cases}$$

Portanto, $V_0 = [(1,1,1)]$ é o autoespaço associado ao autovalor $\lambda = 2$.

Agora, sabendo que $[T(p(x))]_{\beta} = [T]_{\beta}^{\beta}[p(x)]_{\beta}$, temos que uma base γ satisfazendo o pedido é dada por

$$\gamma = \{1, 1 - x, 1 + x + x^2\}$$

(2pt) Sejam V espaço vetorial real munido do produto interno $\langle \cdot, \cdot \rangle$ e $T:V \to V$ um operador linear. Mostre que se T é uma isometria satisfazendo $T^2=I$ então T é simétrico. Problema 1.

RESPOSTA: Note inicialmente que para todo $v, w \in V$ temos

$$||T(v-w)||^2 = ||T(v) - T(w)||^2 = \langle T(v) - T(w), T(v) - T(w) \rangle$$

 $= \|T(v)\|^2 - \langle T(v), T(w) \rangle - \langle T(w), T(v) \rangle + \|T(w)\|^2 = \|T(v)\|^2 - 2\langle T(v), T(w) \rangle + \|T(w)\|^2,$

onde na última igualdade utilizamos que V é um espaço vetorial real. Analogamente

$$||v - w||^2 = ||v||^2 - 2\langle v, w \rangle + ||w||^2$$

No entanto, sendo T uma isometria linear, temos que para todo $v \in V$ vale que ||T(v)|| $|T(w)|^2 = ||T(v-w)||^2 = ||v-w||^2$ e portanto

$$\langle T(v), T(w) \rangle = \langle v, w \rangle.$$

Agora, por definição, T é simétrico se, e somente se, $T=T^*$ se, e somente se,

$$\langle T(v), w \rangle = \langle v, T(w) \rangle$$
, para todo $v, w \in V$.

Assim, se $T^2 = I$, temos

$$\langle T(v), w \rangle = \langle T(v), I(w) \rangle = \langle T(v), T^2(w) \rangle = \langle T(v), T(T(w)) \rangle = \langle v, T(w) \rangle,$$

provando a afirmação.

Problema 4. (2pt) Uma matriz $A \in M_n(\mathbb{R})$ é dita ser positiva semi-definida se $v^T A v \geq 0$ para todo vetor não nulo $v \in \mathbb{R}^n$. Prove que uma matriz simétrica $A \in M_n(\mathbb{R})$ é positiva semi-definida se, e somente se, todos seus autovalores são não negativos.

RESPOSTA: Se A é simétrica positiva semi-definida e $\lambda \in \mathbb{R}$ é um autovalor com autovetor associado $v \in \mathbb{R}^n$, então

$$0 \le v^T A v = \langle A v, v \rangle = \langle \lambda v, v \rangle = \lambda ||v||^2 \implies \lambda \ge 0.$$

Reciprocamente, sendo A simétrica existe $\{v_1, \ldots, v_n\} \subset \mathbb{R}^n$ base ortonormal tal que $Av_i = \lambda_i v_i$ com $\lambda_i \in \mathbb{R}$ para todo $i = 1, \ldots, n$. Tome $v \in \mathbb{R}^n$ e escreva $v = a_1 v_1 + \cdots + a_n v_n$ para escalares $a_i \in \mathbb{R}$. Então,

$$v^{T}Av = \langle Av, v \rangle = \langle \sum_{i=1}^{n} a_{i}Av_{i}, \sum_{j=1}^{n} a_{j}v_{j} \rangle = \sum_{i,j=1}^{n} a_{i}\bar{a}_{j}\langle Av_{i}, v_{j} \rangle$$
$$= \sum_{i,j=1}^{n} a_{i}\bar{a}_{j}\lambda_{i}\langle v_{i}, v_{j} = \sum_{i=1}^{n} a_{i}\bar{a}_{i}\lambda_{i} = \sum_{i=1}^{n} |a_{i}|^{2}\lambda_{i},$$

onde na penúltima igualdade utilizamos que a base é ortonormal. Assim, se $\lambda_i \geq 0$ para todo $i=1,\ldots,n$ temos pela expressão acima que $v^TAv \geq 0$ mostrando que A é positiva semi-definida.

Problema 5. (2pt) Seja V um espaço vetorial de dimensão finita e $T:V\to V$ uma transformação linear com adjunta T^* satisfazendo $TT^*=T^*T$. Mostre que

$$\ker(T) = \ker(T^*)$$
 e $\operatorname{Im}(T) = \operatorname{Im}(T^*)$.

RESPOSTA: Utilizando a definição de adjunta e a comutatividade acima, temos que

$$\|T(v)\|^2 = \langle T(v), T(v) \rangle = \langle v, T^*(T(v)) \rangle = \langle v, T(T^*(v)) \rangle = \langle T^*(v), T^*(v) \rangle = \|T^*(v)\|^2.$$

Portanto.

$$v \in \ker(T) \iff T(v) = 0 \iff ||T(v)||^2 = 0 \iff ||T(v)||^2 = 0 \iff v \in \ker(T^*),$$

mostrando a primeira igualdade.

Por outro lado, se $v \in \ker(T)$ e $w \in \operatorname{Im}(T^*)$, então existe $u \in V$ tal que $w = T^*(u)$ e portanto

 $\langle v, w \rangle = \langle v, T(u) \rangle = \langle T(v), u \rangle = \langle 0, w \rangle = 0,$

mostrando que $\ker(T) \subset \operatorname{Im}(T^*)^{\perp}$. Sendo $\dim V < \infty$ temos pelo Teorema do núcleo e da imagem que

$$\dim V = \dim \ker(T^*) + \dim \operatorname{Im}(T^*),$$

e também que

$$\dim V = \dim \operatorname{Im}(T^*) + \dim \operatorname{Im}(T^*)^{\perp}.$$

Como já mostramos que $\ker(T) = \ker(T^*)$ concluímos que $\dim \ker(T^*) = \dim \operatorname{Im}(T^*)^{\perp}$. Assim,

$$\ker(T) \subset \operatorname{Im}(T^*)$$
 e $\dim \ker(T^*) = \dim \operatorname{Im}(T^*)^{\perp}$,

implicam $\ker(T) = \operatorname{Im}(T^*)^{\perp}$. Utilizando novamente que $\dim V < \infty$ nos fornece que

$$\operatorname{Im}(T^*) = \left(\operatorname{Im}(T^*)^{\perp}\right)^{\perp} = \ker(T^*)^{\perp}.$$

Também, lembrando que $(T^*)^* = T$ temos por acima que

$$\operatorname{Im}(T) = \operatorname{Im}((T^*)^*) = \ker((T^*)^*)^{\perp} = \ker(T)^{\perp},$$

e portanto,

$$Im(T) = ker(T)^{\perp} = ker(T^*)^{\perp} = Im(T^*),$$

mostrando o pedido.

Problema 3. (2pt) Mostre que se λ é um autovalor de um operador linear $T:V\to V$ invertível, então $\frac{1}{\lambda}$ é autovalor de T^{-1} .

RESPOSTA: Seja $v \in V$ um autovetor associado ao autovalor λ , isto é, $v \neq 0$ e $T(v) = \lambda v$. Então,

