Análise Real II Teoria de medida e integração
 Lista 8 - Weak derivatives

Exercise 1. Let $I=(-1,+1)$. For any $p \in[1, \infty]$ show the following:
(i) The absolute value function $u(x)=|x|$ is weakly differentiable on I. A weak derivative u_{1} is given by the sign function

$$
\operatorname{sign}(x):= \begin{cases}-1 & , x<0 \\ 0 & , x=0 \\ +1 & , x>0\end{cases}
$$

(ii) Is (i) still true when I is replaced by the domain \mathbb{R} ?
(iii) The sign function on I does not have a weak derivative. What happens on \mathbb{R} ?

Exercise 2. Note that for weak differentiability the corner of $|\cdot|$ did not matter, but the jump discontinuity of sign was a problem. Check that sign is not absolutely continuous. Is the Cantor function c weakly differentiable? What is the problem?

Exercise 3. Let $Q \subset \mathbb{R}^{2}$ be the open unit ball and consider the function $u(x):=$ $|x|^{-\gamma}$ for $x \neq 0$ and $u(0):=0$. For which values of $\gamma>0$ and $p \in[1, \infty]$

- is $u \in \mathcal{L}^{p}(Q)$?
- does u admit a weak derivative?

Exercise 4. Let $Q \subset \mathbb{R}^{2}$ be the open unit ball. Find an example of $p \geq 1$ and a $W^{1, p}$ function $u: Q \rightarrow \mathbb{R}$ which is unbounded with respect to the L^{∞}-norm on each open subset U of Q. Conclude that your example is not Lipschitz continuous.

