MM805 Tópicos de Análise I - 1°
Semestre 2018
Polyfold theory
".. generalizes differential geometry and
nonlinear Fredholm theory
to a class of spaces which are much more general than (Banach)
manifolds.
These spaces may have (locally) varying dimensions and are
described locally
by retracts on scale Banach spaces, replacing the open sets of
Banach spaces
in the familiar local description of manifolds.
.."
aulas: 4a/6a 10-12h sala 322 IMECC
primeiro encontro: 4a-f, 28 de Março (caráter organização
das primeiras semanas)
Lecture
Notes (AMS Open Math Notes) (to be extended as time
permits)
- Críterio de avaliação: Não haverá provas, nem notas,
quem tiver frequência de pelo menos 75% de presença nas aulas
será aprovado com o conceito 'S' -- assim o curso conta para
os seus créditos sem afetar o CR (a média dos alunos).
- Ementa: Chap. I of [HWZ]: M-polyfolds, sc-calculus,
sc-Fredholm theory, orientations,
applications include Morse complex, Gromov-Witten theory,
symplectic field theory (SFT).
- Literatura principal:
- [HWZ] Hofer, Wysocki, Zehnder "Polyfold and Fredholm
Theory", (2017) 714pp, arXiv:1707.08941
- [FFGW] Fabert et al, "Polyfolds: A first and second look", arXiv:1210.6670
- Futuro: O curso disponibiliza uma parte do fundamento
de varios novos
projetos de pesquisa as quais começamos em 2018. Um
colaborador, Urs Frauenfelder, vai visitar-nos no IMECC nas
primeiras 2 semanas de Março.
- Prerequisitos: Análise Funcional e Geometria
Diferencial
Qualquer dúvida, por favor contata-me.
Some guide to some literature:
To get an overview of which deficits of classical approaches to
infinite dimensional analysis, based on classical smoothness, the
new theory is designed to overcome it is worthwhile to read the introductions
of the following texts. In particular, the older papers are highly
informative in this sense. Thereby one also gets an overview of the
new notions, e.g. scale smoothness, of the new theory.
Últimas notícias
Workshop on Polyfold
Theory 25-31 August 2018 in Augsburg, a main Lecturer is
Helmut Hofer
* arrived today (13/03/2018): The shift map on Floer trajectory
spaces (arXiv:1803.03826 by
Frauenfelder and myself)
So the break was fruitful and gave us one more manuscript we
will follow in this lecture course.
The next class will take place friday 16 March. (Until then I
have a visitor from abroad and it makes sense to fully focus on
research with him. The topic relates to polyfold theory, so the
course might eventually profit from that break anyway.)
Don't miss the talk: 5a-f, 1 de Março, 16h IMECC
Urs Frauenfelder (Augsburg)
What could Hamiltonian delay equations be?
Abstract: This is joint work with Peter Albers and Felix Schlenk.
Although we do
not know what a Hamiltonian delay in general is, we describe a
variational
approach to their periodic solutions. I will explain how periodic
solutions of
some delayed Lotka-Volterra equations arise in this way. Finally I
will discuss
how this leads to some new directions and challenges for Floer homology.
* arrived today (22/02/2018): First
steps in Floer homology on scale Hilbert spaces (arXiv:1802.07445 by
Albers, Frauenfelder, Schlenk)
Urs Frauenfelder will visit us the first two weeks of
this semester. Obviously attendance of his talk is highly
recommended.
See also arXiv:1802.07453
and arXiv:1802.07449.
* aplicação nova (Janeiro 2018): geometria simplética na
dimensão infinita
Crespo-Fabert
"Hamiltonian partial differential equations and symplectic scale
manifolds", arXiv:1801.05259
Descrição:
Geralmente EDPs (chegando como gradientes de um
funcionál) não são campos vetoriais
nos espaços de Sobolev associados por causa do 'consumo
de derivadas espaciais'.
Salvação chegou há pouco (baseado no uso de "scale (sc)
Banach spaces"): [HWZ]
Nós queremos do início participar nesta teoría nova e
aproveitar o poder dela.
De um editor de Inventiones pode-se esperar contribuições perduráveis,
então vale a pena aprender a nova ferramenta (e
aplicar-la: em 2018 começamos
um projeto de pesquisa sobre o "curve shortening flow" o
qual queremos tratar
com a teoria nova).
Joa Weber
sala 318
IMECC UNICAMP
e-mail: joa(at)ime.unicamp.br
fone: ++55 +19 352-16021
hora de atendemento em 2018-1: 6a-feira 12h-13h
Home