Joa Weber

Introdução à homologia

MM811

Lista 6 – Subdivisão baricentrica

Exercícios.

a) Seja K o poliedro dado por o simplexo $s = \langle a_0, a_1, a_2 \rangle$ e todas suas faces. Determine a subdivisão baricentrica de cada um r-esqueleto de K. Mas outras palavras determine

$$(K^0)', (K^1)', (K^2)'.$$

Faça desenhos.

b) Considere o poliedro dado por um n-simplexo $s = \langle a_0, \ldots, a_n \rangle$ e todas suas faces. Guarneça o conjunto $s \times [0,1]$ com a estrutura de um poliedro. (Defina uma colecção de simplexos e mostre que ela satisfaz os axiomas do poliedro.) [Dica:

$$s \times [0,1] = \bigcup_{i=0}^{n} \langle \bar{a}_0, \dots, \bar{a}_i, \bar{\bar{a}}_i, \dots, \bar{\bar{a}}_n \rangle$$

onde
$$\bar{a}_i := (a_i, 0)$$
 e $\bar{\bar{a}}_i := (a_i, 1)$.]

Pseudo-variedades (não-)orientáveis

c) Seja M uma pseudo-variedade n-dimensional. Mostre que

M orientável \Leftrightarrow \nexists circuito desorientador (CD) em M M não-orientável \Leftrightarrow \forall n-simplexo orientado [s] pertence a um CD.

d) Seja M uma pseudo-variedade n-dimensional. Mostre que

$$M$$
 orientável \Rightarrow $H_{n-1}(M; \mathbb{Z})$ é livre.

Teoria de Lefschetz

e) Prove que toda aplicação $S^2\to S^2$ que é contínua e homotópica à identidade tem um ponto fixo. [Dica: Calcule o número L(f) de Lefschetz.]

Encontre aplicações contínuas $T^2 \to T^2$ homotópicas à identidade sem pontos fixos.