Joa Weber

Introdução à homologia

MM811

Lista 5 – Conjuntos convexos, poliedros

Definição 1. A envoltória convexa de um subconjunto $X \subset \mathbb{R}^n$ é o subconjunto

 $\langle X \rangle_{\text{conv}} := \{ \text{todos combinações convexos de elementos de } X \} \subset \mathbb{R}^n.$

Definição 2 (Definição alternativa do poliedro). Um *poliedro* K é uma reunião finita de simplexos abertos, dois a dois disjuntos, tal que cada face de um desses simplexos é ainda um deles.

Exercícios.

- a) Seja $X \subset \mathbb{R}^n$. Prove que:
 - i) A envoltória convexa $\langle X \rangle_{\text{conv}}$ é um conjunto convexo.
 - ii) A envoltória convexa é o menor conjunto convexo que contém X: Todo conjunto convexo que contém X contém $\langle X \rangle_{\text{conv}}$.

iii)

$$\langle X \rangle_{\text{conv}} = \bigcap_{\text{conjuntos convexos } Y \supset X} Y$$

- b) Mostre que a definição alternativa do poliedro é equivalente à definição dado na aula.
- c) Sejam L e M subpoliedros do poliedro K. Prove que $L \cap M$ e $L \cup M$ são subpoliedros de K.
- d) Considere um n-simplexo $s = \langle a_0, \ldots, a_n \rangle$ e o poliedro K dado por s e todas suas faces. Seja K^{n-1} o (n-1)-esqueleto de K (todas faces $\sigma \neq s$ de s). Mostre que a homologia simplicial relativa é dado por

$$\mathrm{H}_*(K, K^{n-1}; \mathbb{Z}) \simeq \begin{cases} \mathbb{Z} & , * = n, \\ 0 & , * \neq n. \end{cases}$$

Espaço projetivo e garafa de Klein

e) Mostre que a homologia simplicial integral do espaço projetivo $\mathbb{R}P^2$ é

$$H_*(\mathbb{R}P^2; \mathbb{Z}) = \begin{cases} 0 & ,* = 2, \\ \mathbb{Z}_2 & ,* = 1, \\ \mathbb{Z} & ,* = 0. \end{cases}$$

Para obter uma triangulação poderia guarnecer Figura 1 com uma estrutura de um poliedro K. Na figura identifique uma 1-cadeia cuja classe de homologia representa H_1 .

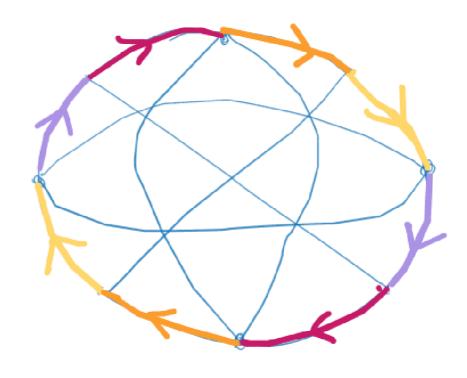
f) Mostre que a homologia simplicial integral da garafa de Klein GK é

$$\mathbf{H}_* (GK; \mathbb{Z}) = \begin{cases} 0 & ,* = 2, \\ \mathbb{Z} \oplus \mathbb{Z}_2 & ,* = 1, \\ \mathbb{Z} & ,* = 0. \end{cases}$$

Para obter uma triangulação poderia guarnecer Figura 2 com uma estrutura de um poliedro L. Na figura identifique uma 1-cadeia w_1 cuja classe de homologia representa a parcela \mathbb{Z} e identifique uma 1-cadeia z_1 que representa \mathbb{Z}_2 . Visualiza GK como superfície (immersado) de \mathbb{R}^3 e verifique geometricamente que $2z_1$ é um bordo.

g) Calcule $H_*(\mathbb{R}P^2; \mathbb{Z}_2)$ e $H_*(GK; \mathbb{Z}_2)$.

Figural



Figural

