Joa Weber

Introdução à homologia

MM811 – Lista 11

Exercícios.

Cálculo vetorial clássico em \mathbb{R}^3

Seja $U \subset \mathbb{R}^3$ um subconjunto aberto e sejam (x^1, x^2, x^3) as coordenadas em U.

a) Considere o

(elemento linha)
$$d\vec{\ell} := (dx^1, dx^2, dx^3) \in \Lambda^1(U; \mathbb{R}^3) = C^{\infty}(U, \mathcal{L}(\mathbb{R}^3))$$
 (elemento área) $d\vec{a} := (dx^2 \wedge dx^3, dx^3 \wedge dx^1, dx^1 \wedge dx^2) \in \Lambda^2(U; \mathbb{R}^3)$ (elemento volume) $dvol := dx^1 \wedge dx^2 \wedge dx^3 \in \Lambda^3(U)$

e mostre que

- i) $d\vec{\ell}|_x = Id \in \mathcal{L}(\mathbb{R}^3)$
- ii) $d\vec{a}|_x: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3: (v, w) \mapsto v \times w$ é o produto vetorial
- iii) $d \, vol|_x: \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}: (u,v,w) \mapsto \det(u,v,w)$ é o determinante para todo $x \in U$.
- b) Mostre que o seguinte diagrama comuta

$$0 \longrightarrow \Lambda^{0}(U) \xrightarrow{d} \Lambda^{1}(U) \xrightarrow{d} \Lambda^{2}(U) \xrightarrow{d} \Lambda^{3}(U) \xrightarrow{d} 0$$

$$= \uparrow_{id} \qquad \cong \uparrow_{d\vec{\ell}} \qquad \cong \uparrow_{d\vec{u}} \qquad \cong \uparrow_{dvol}$$

$$0 \longrightarrow C^{\infty}(U) \xrightarrow{\nabla} \mathcal{X}(U) \xrightarrow{\text{rot}} \mathcal{X}(U) \xrightarrow{\text{div}} C^{\infty}(U) \longrightarrow 0$$

onde $\mathcal{X}(U)$ denota o conjunto $C^{\infty}(U,\mathbb{R}^3)$ dos campos de vetores em U e

$$\nabla := (\partial_1, \partial_2, \partial_3)^{\mathrm{T}} \qquad \operatorname{rot} \xi := \nabla \times \xi \qquad \operatorname{div} \xi := \nabla \cdot \xi = \partial_1 \xi_1 + \partial_2 \xi_2 + \partial_3 \xi_3.$$

Alem disso $f \cdot dvol$ denota multiplicação por uma função e

$$d\vec{\ell} \cdot \xi := \xi_{\mu} dx^{\mu}$$
 $d\vec{a} \cdot \xi := \xi_1 dx^2 \wedge dx^3 + c\'{i}clico.$

- c) Seja U contrátil. Mostre que
 - i) rot $\xi = 0 \implies \xi = \nabla f$ para um $f \in C^{\infty}(U)$;
 - ii) div $\xi = 0 \implies \xi = \operatorname{rot} \eta$ para um $\eta \in \mathcal{X}(U)$;
 - iii) toda função é da forma $f = \operatorname{div} \xi$ para um $\xi \in \mathcal{X}(U)$.

Cohomologia de de Rham

- d) Mostre que $H^k(S^1) \cong \mathbb{R}$ para k = 0, 1 do modo algébrico: use a sequência exata de Mayer-Vietoris e cálcule dimensões pelo teorema de núcleo e imagem.
- e) Encontre uma forma diferencial $\alpha_1 \in \Lambda^1(S^1) = Z^1(S^1)$ tal que $[\alpha_1]$ gera $H^1(S^1)$. Mais precisamente encontre α_1 de modo
 - i) geométrico: use uma partição da unidade para construir e visualizar α_1 ;
 - ii) analítico: identifique $\Lambda^0(S^1)$ e o conjunto $\Lambda^0_{per}(\mathbb{R})$ das funções diferenciáveis $f: \mathbb{R} \to \mathbb{R}$ periódicas do período 1: vale f(t+1) = f(t) para todo $t \in \mathbb{R}$. Analogamente identifique $\Lambda^1(S^1)$ e $\Lambda^1_{per}(\mathbb{R}) = \{\alpha = a(t)dt \mid a \in \Lambda^0_{per}(\mathbb{R})\}$. Depois encontre e fixe $\alpha_1 \in \Lambda^1_{per}(\mathbb{R})$ fechado e não exato. Então mostre que todo $\alpha \in \Lambda^1_{per}(\mathbb{R})$ pode ser escrito na forma $c\alpha_1 + df$ para um $f \in \Lambda^0_{per}(\mathbb{R})$ e uma $constante \ c \in \mathbb{R}$ (os quais ambos dependem de α).

Cohomologia com suportes compactos

f) Mostre que $H_c^0(\mathbb{R}) = 0$ e $H_c^1(\mathbb{R}) \cong \mathbb{R}$.

[Dica: Considere a transformação linear

$$\Lambda_c^1(\mathbb{R}) = \mathrm{Z}_c^1(\mathbb{R}) \to \mathbb{R} : \omega \mapsto \int_{\mathbb{R}} \omega.$$

e determine seu núcleo.]

g) Cálcule $\mathrm{H}^*_c(T^2)$ usando a sequência exata de Mayer-Vietoris onde $T^2=S^1\times S^1.$