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Abstract

Assume M is a closed smooth manifold of finite dimension. The theory of
hyperbolic dynamical systems provides all tools needed to construct the Morse
complex associated to downward gradient flows on M; see [14, 15]. The corre-
sponding homology groups, called Morse homology, represent singular homology
of M. All this even extends to gradient flows on Banach manifolds; see [1].

By formal analogy one expects that Morse homology associated to the down-
ward L2 gradient equation of the classical action functional on the free loop space
ΛM represents singular homology of the (infinite dimensional) Hilbert manifold
ΛM. However, in this case the downward gradient only generates a semi-flow on
ΛM, called the heat flow. As a consequence the isomorphism constructed for flows
in [1] is not avavilable. New ideas are needed to show that Morse homology and
singular homology of the free loop space are naturally isomorphic. Our attempts
to solve this problem resulted in the discovery [18] of a backward λ -Lemma for
the (forward) heat flow. We show how the backward λ -Lemma and elements of
Conley theory can be used to construct a celular filtration of ΛM whose celular
filtration complex is precisely the Morse complex.

Lectures 1 and 2: Finite dimensional case

Throughout fix a closed Riemannian manifold M of dimension n. Now pick a Morse
function f : M→ R. Its critical points serve as generators of the Morse chain groups
which are graded by the Morse index. Counting flow lines of the downward gradient
flow of f between critical points of index difference one defines the Morse boundary
operator. The corresponding homology groups represent singular homology of M.

In the first two lectures we will give a detailed account of this construction, because
major steps are the same in the infinite dimensional setting of Lectures 3 and 4. For
this reason we include an extensive overview of the construction of Morse homology
in the appendix below.
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Lecture 3: Heat flow Morse homology

Consider the Morse function on the free loop space of M, that is the Hilbert manifold
ΛM :=W 1,2(S1,M), given by the classical action functional

S = SV,g : ΛM→ R, γ 7→
∫ 1

0

1
2 |γ̇(t)|

2−Vt(γ(t)) dt,

where V : S1×M→ R is a (generic) smooth function called potential or perturbation
and Vt := V (t, ·). The critical points of S are the (perturbed) closed geodesics in M,
that is the solutions x : S1→M to the ODE

−∇t ẋ−∇Vt(x) = 0.

These geodesics generate the chain groups CM∗(ΛM,SV,g) and their Morse index pro-
vides the grading. The L2 gradient equation of S is the heat equation

d
ds us−gradL2S (us) = ∂su−∇t∂tu−∇Vt(u) = 0, us := u(s, ·), (1)

for smooth cylinders u : R× S1 → M. If the Morse-Smale condition is satisfied the
boundary operator is defined by counting isolated heat flow trajectories between closed
geodesics of Morse index difference one. The corresponding Morse homology groups
HM∗(ΛM,gradL2SV,g), called heat flow homology, have been constructed in [16].

To carry out this construction we interpret the heat equation in the spirit of Floer
homology as a (parabolic) PDE in M with asympotic boundary condition at s = ±∞

provided by two prescribed critical points x and y of the action functional. Note that,
despite the naming, not even a semi-flow appears here at all.

Lecture 4: Hyperbolic dynamics and Morse filtrations for the heat (semi-)flow

It is well known that the Cauchy problem associated to the heat equation (1) for maps
[0,∞)→ ΛM, s 7→ us, with prescribed initial value u0 = γ ∈ ΛM admits a unique so-
lution. The corresponding (forward) semi-flow {ϕs}s≥0 on ΛM is called heat flow. It
enjoys backward uniqueness and, in case S is Morse, each semi-flow line converges
to a closed geodesic, as s→ ∞. But in general, there is no backward flow. Thus exis-
tence of a backward λ -Lemma [18] might be slightly surprising. We sketch its proof,
because the subsequent construction of a Morse filtration of ΛM not only is based on
the backward λ -Lemma, but in fact caused its discovery.

In order to construct a cellular filtration of the loop space which in a certain sense
mirrors the heat flow Morse complex, we will define a Conley pair for each critical
point and apply the backward λ -Lemma [18]. The whole construction relies on replac-
ing the (non-existing) backward flow by taking pre-images under the time-s-map ϕs for
s > 0. The outcome is a natural isomorphism between heat flow Morse homology and
singular homology of the free loop space of M.
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Appendix: Morse homology in finite dimensions

Fix a closed manifold M of finite dimension n. Pick a Morse function f : M→ R and
consider the set Crit of critical points x of f . The Morse index of x is the number
ind(x) of negative eigenvalues of the Hessian of f at x, equivalently, the dimension
of the corresponding negative eigenspace Ex. Consider the free abelian group whose
generators 〈x〉 := (x,ox) are given by the critical points x of Morse index k together with
an orientation ox of Ex. Imposing the relation (x,ox)+ (x, ōx) = 0 in case of opposite
orientations defines the Morse chain group CMk(M, f ).

Fix one orientation for each critical point x and denote the set of chosen orientations
by Or. Firstly, this amounts to fixing a basis of CM∗ which provides the identification

CMk(M, f )'
⊕

x∈Critk

Z〈x〉=: ĈMk(M, f ,Or;Z).

Secondly, this gives rise to a natural boundary operator on ĈM∗.
Pick, in addition, a Riemannian metric on M and consider the downward gradient

vector field −∇ f on M whose flow we denote by {ϕs}s∈R. For each critical point x its
unstable manifold W u(x) := {p ∈M | lims→−∞ ϕs p = x} is a contractible submanifold
of M of dimension k = ind(x); similarly for the stable manifold W s(x). As Ex coincides
with the tangent space TxW u(x), which itself is equal to the orthogonal complement of
TxW s(x), our choice of orientation of Ex orients W u(x) and co-orients W s(x).

For generic metrics g all unstable and stable manifolds intersect transversally, that
is the Morse-Smale condition holds generically. Thus the sets Mxy := W u(x)∩W s(y)
of connecting trajectories are oriented manifolds (M being orientable or not). The
dimension is the Morse index difference. If the index difference is one, then there are
only finitely many (geometrically distinct) connecting trajectories. Comparing their
orientations with the downward flow provides the characteristic sign nu ∈ {−1,+1}
for each of these so-called isolated trajectories u between x and y. Denote by n(x,y)
the (finite) sum of all these characteristic signs. Counting isolated flow lines with
characteristic signs defines the Morse boundary operator given by

∂k = ∂k(M, f ,g,Or) : ĈMk→ ĈMk−1, 〈x〉 7→ ∑
y∈Critk−1

n(x,y)〈y〉

for every x in the set Critk of critical points of index k. To prove that there are only
finitely many isolated trajectories—thus n(x,y) being well defined—requires to un-
derstand (non)compactness of the connecting manifolds Mxy. To prove that ∂ 2 = 0
amounts to understanding how to glue two connecting trajectories that meet (asymp-
totically) at a critical point. To solve these two problems we employ [14, 15] two fun-
damental tools of hyperbolic dynamics. Firstly, the Grobman-Hartman theorem [3, 4]
takes care of the compactness issue. Secondly, the two λ -Lemmas of Palis [6] together
take care of the gluing process; indeed the forward and the backward time λ -Lemma
are used simultaneously.

Morse homology is the homology associated to the above chain complex, that is

HM∗(M, f ,g,Or) := H∗
(

ĈM∗,∂∗
)
.
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Abbreviating the auxiliary data ( f ,g,Or) by α =( f α ,gα ,Orα) we will present Poźniak’s
construction [8] of isomorphisms among Morse homology associated to choices of
auxiliary data α and β . These isomorphisms Φ

αβ
∗ are natural in the sense that the

rectangular part of the diagram

HM∗(M,α)
Φ

γα
∗

//

Φ
βα
∗

��

HM∗(M,γ)

Φ
δγ
∗

��

Ψ
γ
∗

&&
H∗(M;Z)

HM∗(M,β )
Φ

δβ
∗ // HM∗(M,δ )

Ψδ
∗

88

commutes.
To prove that Morse homology actually represents singular homology there are

various possibilities. For instance, Milnor [5] uses the freedom to change the Morse
function. He picks a self-indexing one, that is f (x) = k whenever x is a critical point of
Morse index k, and constructs a Morse filtration of M (a cellular filtration which in a
certain sense mirrors the Morse complex). In lecture four, in a more general infinite di-
mensional setting, we present a construction [17] which works for any Morse function.
To achieve this we will use elements of Conley theory [2]. The resulting isomorphism
renders the triangular part of the diagram above commutative.

For a construction of Morse homology in the spirit of Floer theory we recommend
the book [9] by Schwarz; see [10] for an isomorphism to singular homology via pseudo-
cycles.
Examples. Surfaces Σ in euclidean R3 equipped with (generic) height functions f :
R3 ⊂ Σ→ R, (x,y,z) 7→ z and the induced metric are a rich source of examples where
the Morse complex can be easily visualized.
a) Start with the unit sphere. Since there are no critical points of index difference one
there are no isolated trajectories. Thus ∂k = 0, so homology is given by the chain
groups (which are generated by the maximum and minium of f ).
b) To obtain examples with nontrivial boundary operator deform the unit sphere such
that a saddle point (Morse index one) appears. One could also replace spheres by tori.
Remark concerning history. The Morse complex goes back to the work of Thom [13],
Smale [11, 12], and Milnor [5] in the 40’s, 50’s and 60’s, respectively. The geometric
formulation in terms of flow trajectories was re(dis)covered by Witten in his influential
1982 paper [19]. In fact, he studied a supersymmetric quantum mechanical system
related to the Laplacian ∆s = dsd∗s + d∗s ds which involves the deformed Hodge differ-
ential ds = e−s f des f and acts on differential forms. Here f : M→ R denotes a Morse
function and s ≥ 0 is a real parameter. The geometric Morse complex arises as the
adiabatic limit of the quantum mechanical system, as the parameter s tends to infinity.
In the 90’s the details of the construction of the geometric Morse complex have been
worked out by Poźniak [8], Schwarz [9], and the author [14].
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